Boundary Value Problems (BVP's)
So far wive seen solving IVP's like

$$
\left\{\begin{array} { l }
{ y ^ { \prime } = f (y , t) } \\
{ y (t _ { 0 }) = y _ { 0 } }
\end{array} \quad \& \left\{\begin{array}{l}
y^{\prime \prime}=f\left(y^{\prime}, y, t\right) \\
y\left(t_{0}\right)=\alpha, y^{\prime}\left(t_{0}\right.
\end{array}\right.\right.
$$

In contrast, BVP's are differential equations with conditions at two different points.

For example:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

Remark:
In general, we need 2 values to solve a $2^{\text {nd }}$ order ODE

Example : $\quad y^{\prime \prime}=-y$
has the general solution

$$
y(t)=A \sin t+B \cos t
$$

Then, giver say y(0) \& y' (0) as en IVP' we ca solve for

But we can also solve for A, B given $y(0) \& y(\pi / 2)$ (say $)$ (as in BטP's) (assunigme get a consistent system

In general, we need numerical me thods for solving BVP's!
Ul will soon consider these, but first, let's worry about existence of solutions to $B V P$ s

Theorem: The B VP

$$
\left\{\begin{array}{l}
x "=f(t, x) \\
x(0)=0, x(1)=0
\end{array}\right.
$$

(has a unique sol'n if $\frac{\partial f}{\partial x}$ is cont., non-neg., bounded in

$$
[0,1] \times \mathbb{R}
$$

Example: Show that

$$
\left\{\begin{array}{l}
x^{\prime \prime}=(5 x+\sin 3 x) e^{t} \\
x(0)=x(1)=0
\end{array}\right.
$$

has a unique solin:
Soling: $f(t, x)=(5 x+\sin 3 x) e^{t}$

$$
\Rightarrow \frac{\partial f}{\partial x}=(5+3 \cos 3 x) e^{t}
$$

which is cont., non-neg(why?), \& bounded (by $8 e$) on $[0,1] \times \mathbb{R} \Rightarrow$ we have a unique sol'n by the theorem.

Applying the theorem to more general BURs, like

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f(t, x) \\
x(a)=\alpha, y(b)=\beta
\end{array}\right.
$$

Ue'll Get there in 2 steps:
fIst Theorem on two-point BUP's Consider:

$$
\begin{array}{lr}
(1) \\
{ }^{(1)}=f(t, x) & \left\{\begin{array}{l}
y^{\prime \prime}=g(t, y) \\
x(a)=\alpha, x(b)=\beta
\end{array}\right.
\end{array}\left\{\begin{array}{l}
y(0)=\alpha, y(1)=\beta
\end{array}\right.
$$

where $g(p, q)=(b-a)^{2}(f(a+(b-a) p, q)$

* If y solves (2), then

$$
\begin{equation*}
x(t)=y\left(\frac{t-a}{b-a}\right) \text { solves } \tag{1}
\end{equation*}
$$

* If x solves (1), then

$$
y(t)=x(a+(b-a) t) \text { sones (2). }
$$

Proof: Simply check that the change of variables (see bola).

Remark: The above theorem simply remaps the interval $[a, b]$ to $[0,1]$
Remark: To be able to use Theorem, we still have to deal with the fact that we have.

$$
\left\{\begin{array}{l}
y^{\prime \prime}=g(t, y)^{y(0)}=\alpha, \quad y(1)=\beta
\end{array}\right.
$$

while we'd like to have $\alpha=\beta=0$
Solon B Just subtract a linear function!
$2^{\text {nd }}$ Theorem on two-point BUP's Consider:
(2)

$$
\begin{aligned}
& \text { (3) } \int z^{\prime \prime}=h(t, z) \\
& \text { lz(0)=0,z(1)=1 }
\end{aligned}
$$

where $h(p, q)=g(p, q+\alpha+(\beta-\alpha) p)$

* If z solves (3), then

$$
y(t)=z(t)+\alpha+(\beta-\alpha) t \text { solnes(2) }
$$

* If y solves (2), then

$$
z(t)=y(t)-[\alpha+(\beta-\alpha) t] \text { soles (3). }
$$

Proof: Chech.
Example an how to use the 3 therrems together
Convert the fwo-point BVP to an equivalent one with 0 soundary values an [0,1]

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x^{2}+3-t^{2}+x t \\
x(3)=7, \quad x(5)=9 \\
t_{a}, \quad 七_{b}
\end{array}\right.
$$

Solin:
(1) By the it theorem:
$(*)$ is equmalent to

$$
\begin{aligned}
& \left\{\begin{array}{l}
y^{\prime \prime}=g(t, y) \\
y(0)=7, \quad y(1)=9 \\
\text { with } g(t, y)=4 f\left(\frac{3+2 t, y)}{\uparrow}-(b-a)^{2} \quad a+b-a\right) t
\end{array}\right.
\end{aligned}
$$

so $g(t, y)=4\left[y^{2}+3-(3+2 t)^{2}+x(3+2 t)\right]$
(2) By the $2^{\text {nd }}$ theorem
$(*)$ is now equivalent to

$$
\begin{aligned}
& z^{\prime \prime}=h(t, z) \\
& z(0)=0, z(1)=0 \\
& \text { with } h(t, z)=g(t, z+7+2 t) \\
& =4\left[(z+7+2 t)^{2}+3-(3+2 t)^{2}+\left(\begin{array}{c}
(z+7+2 t) \\
(3+2 t)]
\end{array}\right.\right.
\end{aligned}
$$

So, to solve for x, we can first solve for z, then substifute

$$
y(t)=z(t)+7+2 t
$$

and $x(t)=y\left(\frac{t-3}{2}\right)$

Theorem
Let $f(t, s)$ be cont's on $[0,1] \times \mathbb{R}$ with $\left|f\left(t, s_{1}\right)-f\left(t, s_{2}\right)\right| \leqslant k\left|s_{1}-s_{2}\right|$
where $k<8$
Then $\left\{\begin{array}{l}x^{\prime \prime}=f(t, x) \\ x(0)=0=x(1)\end{array}\right.$
has a unique solo in $C[0,1]$

$$
\begin{aligned}
& \text { Example: }\left\{\begin{array}{l}
x^{\prime \prime}=2 e^{t \cos x} \\
x(0)=x)
\end{array}\right. \\
& \sum x(0)=x(1)=0 \\
& \text { - } f(t, x)=2 e^{t \cos x} \\
& \Rightarrow \frac{\partial f}{\partial x}=-2 t \sin x e^{t \cos x} \\
& \Rightarrow\left|\frac{\partial f}{\partial x}\right| \leqslant 2 e \text { on }[0,1] \times \mathbb{R}
\end{aligned}
$$

$f(t, x)$ is Lipschits in x on $[0,1] \times \mathbb{R}$ with canst $2 e<8 \Rightarrow$ ore have a unique solln by the theorem above.

Solving BVP's: Shooting Methods

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=2, x(b)=
\end{array}\right.
$$

Rough Idea:
(1) Convert the BUP to an IVP by guessing the value of x (a)
(2) Integrate the equation
(3) Check if $x(b)=\beta$. I f $x(b) \neq \beta$, guess $x^{\prime}(a)$ and try again

So now:
(*) $\left\{\begin{array}{l}x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\ x(a)=\alpha, \quad x^{\prime}(a)=z \\ \uparrow\end{array}\right.$
this is a guess
Let the soling of (*) be x_{z}. We'd like $x_{z}=\beta$, so we define $\phi(z)=x_{z}(b)-\beta$

The error from our guess
Our goal is to get $\phi(z)=0$.
This is \quad just $=$ a nonlinear equation that we need to solve
\Rightarrow can use Newton's method, secant method, bisection method, etc...

OTOH, we don't explicitly have $\phi(z)$. Need to solve an IVP numerically evaluation of $\phi(z)$

Secant Method
Recall? to solve $\phi(z)=0$
we run the iteration

$$
z_{n}=z_{n-1}-\left(\frac{z_{n-1}-z_{n-2}}{\phi\left(z_{n-1}\right)-\phi\left(z_{n}-2\right)}\right) \phi\left(z_{n-1}\right)
$$

How, after n iterations, we have $\left(z_{i}, \phi\left(z_{i}\right)\right)$ for $i=1, \ldots, n$
\Rightarrow Can use polynomial interp to get a polynomial with

$$
P\left(\phi\left(z_{i}\right)\right)=z_{i} \quad \phi^{-1} \text { by proximation of } p \text { ! }
$$

now let $z_{n+1}=P\binom{0}{\uparrow}$

$$
\phi\left(z_{n+1}\right)=0
$$

Use Z_{n+1} as the next guess for $x^{\prime}(a)=z$.
To summarize:

- Want to solve $\left\{\begin{array}{l}x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\ x(a)=\alpha, x\end{array}\right.$
- Instead, we solve

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=\alpha, x^{\prime}(a)=z_{1}
\end{array}\right.
$$

- This give a soln $x_{z_{1}} \&$ a boundary value ${ }^{z_{1}} x_{z_{1}}(b)$
So our error is

$$
\phi\left(z_{1}\right)=x_{z_{1}}(b)-\beta
$$

- Doit agar with z_{2} to get

$$
\phi\left(z_{2}\right)=x_{z_{2}}(b)-\beta
$$

- Now run the secant method

$$
\Rightarrow z_{n}=z_{n-1}-\left(\frac{\phi\left(z_{n-1}\right)-\phi\left(z_{n-2}\right)}{z_{n-1}-z_{n-2}}\right) \phi\left(z_{n-1}\right)
$$

- This gives $\left(z_{i}, \phi\left(z_{i}\right)\right), i=1, \ldots, n$ use polynomial interp to get z_{n+1} :

$$
P\left(\phi\left(z_{n+1}\right)\right)=P\binom{0}{-1}=z_{n+1}
$$

Terror
Downsides

- Computationally expensive
- Requires $\phi(z)$ to have differen inverse near root (So it need root to be simple)

